2023年成考高起点每日一练《数学(文史)》9月13日专为备考2023年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知成等差数列,且
为方程
的两个根,则
的值为()
- A:
- B:
- C:
- D:
答 案:D
解 析:由根与系数的关系得由等差数列的性质得
2、函数的图像与直线y=4的交点坐标为()
- A:(0,4)
- B:(4,64)
- C:(1,4)
- D:(4,16)
答 案:C
解 析:令y=4x=4,解得x=1,故所求交点为(1,4).
3、已知向量a=(3,4),b=(0,-2),则cos=()
- A:
- B:
- C:
- D:
答 案:B
解 析:因为a=(3,4),b=(0,-2),
4、直线2x-y+7=0,与圆的位置关系是()
- A:相离
- B:相交但不过圆心
- C:相切
- D:相交且过圆心
答 案:C
解 析:易知圆心坐标(1,-1),圆心到直线2x-y+7=0的距离d ∵圆的半径
∴d=r,∴直线与圆相切
主观题
1、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.
答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x)
整理得y=+30x+1800
配方得y=
+1875
当x=5时,y有最大值,所以每亩地最多种25棵
2、设函数f(x)且f'(-1)=-36
(Ⅰ)求m
(Ⅱ)求f(x)的单调区间
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
当x<-3时,f'(x)>0;
当-3
3、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
4、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
得
设A(x1,y1).B(x2,y2),则
因此
填空题
1、函数f(x)=在区间[-3,3]上的最大值为()
答 案:4
解 析:这题考的是高次函数的最值问题,可用导数来求函数在区间[-3,3]上的最值。 列出表格
由上表可知函数在[-3,3]上,在x=1点处有最大值为4.
2、从某班的一次数学测试卷中任意抽出10份,其得分情况如下:81,98,43,75,60,55,78,84,90,70,则这次测验成绩的样本方差是()
答 案:252.84
解 析:
=252.84
网友评论
共0条