124职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2023年04月01日成考高起点每日一练《数学(理)》

2023年04月01日成考高起点每日一练《数学(理)》

2023/04/01 作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(理)》4月1日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、展开式中,末3项的系数(a,x 均未知) 之和为()  

  • A:22
  • B:12
  • C:10
  • D:-10

答 案:C

解 析:末三项数之和为

2、设集合A={0,1},B={0,1,2},则A∩B=()  

  • A:{1,2}
  • B:{0,2}
  • C:{0,1}
  • D:{0,1,2}

答 案:C

解 析:

3、从点M(x,3)向圆作切线,切线的最小值等于()  

  • A:4
  • B:
  • C:5
  • D:

答 案:B

解 析:如图,相切是直线与圆的位置关系中的一种,此题利用圆心坐标、半径,求出切线长. 由圆的方程知,圆心为B(-2,-2),半径为1,设切点为A, 由勾股定理得, 当x+2=0时,MA取最小值,最小值为  

4、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由题可知向量a=(2,3,m),故,解得m=0.

主观题

1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

3、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值

答 案:(Ⅰ)函数的定义域为 (Ⅱ)  

4、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  

答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294  

填空题

1、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  

答 案:

解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,

2、函数的图像与坐标轴的交点共有()  

答 案:2

解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有故函数与x轴交于(1,0) 点,因此函数 与坐标轴的交点共有 2个.

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论